Copied to
clipboard

?

G = C23×A5order 480 = 25·3·5

Direct product of C23 and A5

direct product, non-abelian, not soluble, A-group

Aliases: C23×A5, SmallGroup(480,1187)

Series: ChiefDerived Lower central Upper central

C1C2C22C23 — C23×A5
A5 — C23×A5
A5 — C23×A5

Subgroups: 2974 in 312 conjugacy classes, 32 normal (4 characteristic)
C1, C2 [×7], C2 [×8], C3, C22 [×7], C22 [×50], C5, S3 [×8], C6 [×7], C23, C23 [×56], D5 [×8], C10 [×7], A4, D6 [×28], C2×C6 [×7], C24 [×15], D10 [×28], C2×C10 [×7], C2×A4 [×7], C22×S3 [×14], C22×C6, C25, C22×D5 [×14], C22×C10, C22×A4 [×7], S3×C23, A5, C23×D5, C23×A4, C2×A5 [×7], C22×A5 [×7], C23×A5

Quotients:
C1, C2 [×7], C22 [×7], C23, A5, C2×A5 [×7], C22×A5 [×7], C23×A5

Smallest permutation representation
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 11 7 17 5 13)(2 12 10 18 6 16)(3 19)(4 20)(8 14)(9 15)(21 35 27 31 25 37)(22 36 30 32 26 40)(23 33)(24 34)(28 38)(29 39)
(1 23 7 29 5 21 3 27 9 25)(2 24 10 26 8 22 4 30 6 28)(11 31 19 37 15 35 17 33 13 39)(12 38 18 34 16 36 14 32 20 40)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,11,7,17,5,13)(2,12,10,18,6,16)(3,19)(4,20)(8,14)(9,15)(21,35,27,31,25,37)(22,36,30,32,26,40)(23,33)(24,34)(28,38)(29,39), (1,23,7,29,5,21,3,27,9,25)(2,24,10,26,8,22,4,30,6,28)(11,31,19,37,15,35,17,33,13,39)(12,38,18,34,16,36,14,32,20,40)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,11,7,17,5,13)(2,12,10,18,6,16)(3,19)(4,20)(8,14)(9,15)(21,35,27,31,25,37)(22,36,30,32,26,40)(23,33)(24,34)(28,38)(29,39), (1,23,7,29,5,21,3,27,9,25)(2,24,10,26,8,22,4,30,6,28)(11,31,19,37,15,35,17,33,13,39)(12,38,18,34,16,36,14,32,20,40) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,11,7,17,5,13),(2,12,10,18,6,16),(3,19),(4,20),(8,14),(9,15),(21,35,27,31,25,37),(22,36,30,32,26,40),(23,33),(24,34),(28,38),(29,39)], [(1,23,7,29,5,21,3,27,9,25),(2,24,10,26,8,22,4,30,6,28),(11,31,19,37,15,35,17,33,13,39),(12,38,18,34,16,36,14,32,20,40)])

Matrix representation G ⊆ GL6(𝔽31)

3000000
010000
001000
000222528
00015226
0003000
,
3000000
0300000
001000
000100
0000030
00030130
,
3000000
0300000
0030000
000251522
000222528
000010

G:=sub<GL(6,GF(31))| [30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,15,30,0,0,0,25,22,0,0,0,0,28,6,0],[30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,30,0,0,0,0,0,1,0,0,0,0,30,30],[30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,25,22,0,0,0,0,15,25,1,0,0,0,22,28,0] >;

40 conjugacy classes

class 1 2A···2G2H···2O 3 5A5B6A···6G10A···10N
order12···22···23556···610···10
size11···115···1520121220···2012···12

40 irreducible representations

dim11334455
type++++++++
imageC1C2A5C2×A5A5C2×A5A5C2×A5
kernelC23×A5C22×A5C23C22C23C22C23C22
# reps172141717

In GAP, Magma, Sage, TeX

C_2^3\times A_5
% in TeX

G:=Group("C2^3xA5");
// GroupNames label

G:=SmallGroup(480,1187);
// by ID

G=gap.SmallGroup(480,1187);
# by ID

׿
×
𝔽